

Welcome to Bigbom Digital Contracts’s documentation!

Overview:

	Bigbom Digital Contract Platform Technical Paper
	A brief history on contract signing

	The introduction of Bigbom Digital Contract

	Freelancer Smart Contract Architecture
	Introduction

	High-level Overview

	Detailed Hirer Flow

	Detailed Freelancer Flow

	Stack

	Permissions

	How to work with Bigbom Freelancer DApp
	Ropsten Contract Information

	Example

	Event lists:

Enviroments:

	Ethereum Mainnet

	Ropsten Testnet

	Rinkeby Testnet

	Tomochain

Guides:

	DApps Integration Guide

Bigbom Smart Contracts:

	BBFreelancer
	Modifiers

	BBFreelancerJob
	Events

	Functions

	BBFreelancerBid
	Events

	Functions

	BBFreelancerPayment
	Events

	Functions

	BBStorage
	Modifiers

	Events

	Functions

	BBDocumentSign

	BBLib

	BBStandard
	Functions

	BBParams

	BBDispute
	Events

	Functions

	BBVoting
	Events

	Modifiers

	Functions

	AdminUpgradeabilityProxy

Bigbom Digital Contract Platform Technical Paper

This technical paper describes how a contract is being established between parties, and how Bigbom Digital Contract Platform will implement it’s idea to implement a decentralized digital advertising ecosystem via smart contracts.

A brief history on contract signing

Paper Contract: The oldest, most popular method for establishing business relationship. Usually it requires two people, representing their organization or themselves, in order to sign the contract. Some contracts requires a 3rd-party as the validator.
Once signed, both parties is obliged to follow their duties, written in the contract. Whether a dispute happens, it will be resolve using the law of country that is designated in the contract.

One of the biggest problem with a paper contract is geography distance. Imagine Bob, which lives in New York and need to do business with a partner in South Africa, he has to travel approximately 15 hours in order to get to Johannesburg, took another day to meet the partner and sign to the contract, then take another same long flight back to New York. What happens if his partner suddenly changes his mind, refusing to sign into the contract? What happens if he’s gone rouge, and ran off AFTER took your money? Is Bob gonna hire a lawyer to bring him to the court, and then paying all the expenses until he able to get the money back ?

With the development of internet communication, paper contract is less and less importance for a business, since it’s show its weakness in cost and execution. That’s why Digital Contract was invented

Electronic Contract aka Docusign and friends: With the development of internet applications and cryptographic algorithm, e-signature solutions was developed to give users the capability of signing contract without having physical presence. One of the leading solution of e-signature is Docusign, which provides a Software-as-a-Service signing solution. Signing a contract now requires just a few steps:

	Uploading a contract under digital format, eg PDF or word format

	Send an invitation link to signers. Each signer requires to create an e-signature

	Sign the document. The signed document then available for both parties, with the e-signature stamped on the document.

With e-signature, Bob now does not need to spend 30 hours in airplane, and he still can do business with his partner in Johannesburg. But the problem still persist. There is no guarantee that his partner will follow his obligation in the contract. Geographic problem solved, but what about execution problem ?

The introduction of Bigbom Digital Contract

Bigbom Digital Contract is a blockchain-based solution built with the aim of solving the contract signing and contract execution problem using a single platform. By combining the power of blockchain and e-signature, Bigbom Digital Contract will help people doing business together, with less worries about the authenticity of the contract, and the payment part of the contract. Let’s take this scenario to see how Bigbom Digital Contract is going to work.

Mandy is an advertiser, and she wants to run an ads campaign on John’s website, https://thefamousjohn.com. Through direct contact, John is offering Mandy a Cost-Per-Click campaign, with the total 100,000 clicks on a banner sitting on top of John’s website. The cost per every click is agree at 0.05$, which means it will cost Mandy $5000 for the whole campaign, expected to run in 15 days.

Here is how Bigbom Digital Contract is going to take place.

E-Signing:

John will draft a contract, with all the terms included. After that he will start uploading the contract, using PDF format into Bigbom Digital Contract platform. John then send an invitation to Mandy to her email address, asking Mandy to review and sign the contract. After John and Mandy signed the contract, Bigbom Digital Contract platform will calculate the hash of the document and store it into blockchain using a smart contract. By using this, signed data is permanent, and both John and Mandy can re-check the authenticity of the contract anytime.

Below is the workflow for signing a document by using smart contract:

[image: Sign a contract with ethereum private key]

	docHash is a sha3 hash from uploaded pdf. Notes that the hash is not on the file, but on the contents itself. An example code in python

>>> Web3.sha3(0x747874)
>>> Web3.sha3(b’\x74\x78\x74')
>>> Web3.sha3(hexstr=‘0x747874’)
>>> Web3.sha3(hexstr=‘747874’)
>>> Web3.sha3(text=‘txt’)
HexBytes(‘0xd7278090a36507640ea6b7a0034b69b0d240766fa3f98e3722be93c613b29d2e’)

	Now with the docHash, a person with a Ethereum private key could easily sign it. The result will be a signature of the docHash. Only the owner of signed address is able to verify signature.

	An Ethereum smart contract is responsible for store and query the list of signer. By validating the signer list, we can know if a document has been signed by other parties or not.

Digital Contract Verification & Payment:

For contract execution, there are two key factors: Verifies that the contract has been executed as agreed, and proccessing the payment. For tracking the execution of the contract, Bigbom Digital Contract allows to update the contract progress via different methods, depends on the contract type. The general lifecycle is being describing in below image:

[image: Digital Advertising Campaign Lifecycle]

A vital part for both Advertisers and Ads Platform/Publisher is they have to able to know how much their budget has been spent, and how much the is the progress of the campaign. By using smart contract, both parties will be able to traceback to their historical data through the contract, since all data is immutable and transparent for both sides.

Digital Advertising Campaign type and metrics:

Cost-Per-Click Ads (CPC): A Cost-Per-Click Ad represents the cost to the advertiser everytime someone click to their ads. Most of online ads platforms requires a target cost-per-click for new campaign to run.

Cost per Click formula: [image: CPC formula]

Cost-Per-Mile (CPM): The “cost per thousand advertising impressions” metric (CPM) is calculated by dividing the cost of an advertising placement by the number of impressions (expressed in thousands) that it generates. CPM is useful for comparing the relative efficiency of various advertising opportunities or media and in evaluating the overall costs of advertising campaigns
(definition source) [https://en.wikipedia.org/wiki/Cost_per_mille]

Cost per Mile formula: [image: CPM formula]

Cost-Per-Install (CPI): Cost Per Install campaigns are specific to mobile applications. In a Cost Per Install campaign, publishers place digital ads across a range of media in an effort to drive installation of the advertised application. The brand is charged a fixed or bid rate only when the application is installed.
(definition source) [http://www.businessofapps.com/guide/cost-per-install/]

Cost per Install formula: [image: CPI formula]

Contract-As-Code:

When an advertiser wants to buy a slot for their campaign, they will have to consider about their target and budget , meaning that they will select which network that is able to provide the maxium target with the fixed budget cost. In some other cases, some advertisers just want to reach their target, and they’re willing to spend the exact amout of budget that is able to reach their target. Let’s try to imagine if a digital ad contract is a computer software function with a set of parameters, that function will likely has these parameters:

	Signed copy of the contract terms (as legal material)

	Contract start date

	Contract end date

	Agreed target (amount of clicks, impressions or installs)

	Budget

	Minimum guaranteed target (for contract violation term)

	Current milestone (current amount of clicks, impressions or installs)

	Current spending

With a contract-as-code design, it’s very easy to both advertisers and ads platforms/publisher to track and viewing the progress. In practice, many ads platform and publisher is already implementing their own system to tracking and updating their progress to their customers. However not all system is bullet-proof with cybersecurity crime, and the cost of keeping data availability is not cheap at all. For a long time, most of enterprises is depending into expensive systems/storages in order to achieving this.

Whereas most technologies tend to automate workers on the periphery doing menial tasks, blockchains automate away the center. Instead of putting the taxi driver out of a job, blockchain puts Uber out of a job and lets the taxi drivers work with the customer directly.

Vitalik Butterin

By using smart contract, all of these parameters will be stored inside the smart contract. Since blockchain is immutable by itself, it’s very easy for both parties to query all the historical data (through the transaction id) and validates with the actual results. Bigbom Digital Contract provides a set of contract templates that suits to each scenario, whether you want to run your campaign with a specific target, or you want to join to a real-time bidding system with a specific amount of budget.

Once these terms has been put into the smart contract. Bigbom Digital Contract platform will start to monitor the campaign, and consequentaly update the campaign into the smart contract, until it ends. At this point, both Mandy and John is aware about how well the campaign was, and what should be the actual cost.

Following workflow is describing how contract-as-code works:[image: contract-as-code]

Payment: Payment is a very complex topic. With a Digital Advertising Campaign, the actual bill is depends on various factor, like the actual amount of clicks or installations.

We’re currently developing our smart contract in order to support following payment method:

Due Date Payment: The final payment amount will be determine at the contract end date. Based on the current result, Our smart contract will determine the exact amount of payment for the seller side.

Pay as you go: A prefer payment method for most online platform is charging their customer based on the progress. Currently our smart contract is supporting daily payment. The amount of payment is determined by using the progress of previous day, for calculating how much the seller side will get.

Generally speaking, the contract will end up in these scenarios:

a. John get paid based on what he delivered, for example $3500 for 70,000 clicks after 15 daysb. John get paid full amount of $5000, if he able to deliver 100,000 clicks or more after 15 daysc. John does not get paid at all, since he’s only able to deliver 9,000 clicks, and in the contract they both agreed that if the target dropped below 10%, Mandy won’t have to pay anything.

Bigbom Digital Contract is able to adapt with all these scenarios. Before the contract goes into effective, it is required that Mandy needs to make a security deposit into the contract. The amount of security deposit is negotiable between Mandy and John. Bigbom Digital Contract will evaluate the amount of deposit and calculate the worth of clicks or installations that is equal to the amount of desposit. Since the campaign stats is constanly being monitored by Bigbom Digital Contract Platform, Mandy and John is able to see how much money has spent for the campaign. Before the deposit is being depleted, Bigbom Digital Contract Platform will notify Mandy for making another deposit, in order to keep the campaign running. If Mandy refuses to make the deposit, John will get a notification, suggesting him to suspend the campaign.

Even if Mandy keeps the commitment and send the security deposit, there is a possibility that John is not able to fulfill the contract terms, for example he cannot deliver more than 10,000 clicks after 15 days. In this case, since all the security deposit is being kept by the Digital Contract, John will receive any money, and at the end of the campaign, Mandy will get a refund, if the refund condition is met.

A demonstration for this payment process is as following:[image: ads-payment-workflow]

Fiat/Token conversion: One of the biggest obstacle for people when using blockchain products is volatility in price. Imagine a token with a price $0.02 today become $0.05 tomorrow, and then drops back to $0.01 the day after. With the majority of people still using fiat currencies for daily trading, this volatility is unacceptable and prevent them to adopting blockchain products. With the aim to create an entrance for fiat users, Bigbom Digital Contract Platform is developing a method that calibrates the amount of actual BBO Token should be paid before the actual payment happens, so people will be kept away from the volatility in price. Here’s how it works

Scenario 1: Mandy is a BBO hodler, and John acccept BBO for his payment. This is a very straight-forward case, Mandy will make the deposit by BBO, and John will get paid by BBO as well.

Scenario 2: Mandy and John is not BBO holder, and they want to settle the contract in fiat, for example USD Dollar. Bigbom Digital Contract Platform will ask Mandy for making the deposit in fiat, by sending money via a payment gateway. After receiving the deposit, Bigbom Digital Contract Platform will calculate it to the actual BBO Token amount based on the market price, and took an amount of BBO equivalent to the original amount, multiplying with a factor of 2 from the Bigbom Reserve, then sending it to the Digital Contract as the deposit. The reason behind multiplying to a factor to ensuring that Bigbom Digital Contract platform is able to endure the price changes up to two times on market price each time payment term is being triggered.

Once the contract finished, Bigbom Digital Contract Platform will re-calculate the actual amount of BBO needed to pay, based on John’s performance and current market price. At the end of the day, John will receive the amount of BBO with similar value into USD Dollar that he supposed to get from Mandy. By integrating with other exchange platform, John will have the capability to swap BBO into Ethereum/Bitcoin, or even Fiat currencies after he received it.

At current phase, we will support USD and SGD as accepted fiat currencies, and will integrate with Kyber Network for swapping BBO to ETH. More currencies and swapping method will come in the future.

Freelancer Smart Contract Architecture

Introduction

There are three main components in Bigbom Freelancer App: BBFreelancerBid.sol, BBFreelancerJob.sol, BBFreelancerPayment.sol

BBFreelancerJob.sol: manage job information

BBFreelancerBid.sol: manage biding

BBFreelancerPayment.sol: manage payment

High-level Overview

BBOFreelancer Dapp allows the hirer to post the job, they will automatically begin to receive bids from the freelancers. They can choose the best freelancer & success work.

[image: Freelancer High-level Overview]

Detailed Hirer Flow

	Post a job

	Choose the perfect freelancer

	Pay & success

Detailed Freelancer Flow

	Find a job

	Make your best bid

	Get awarded and earn

Stack

[image: Freelancer Stack]

Permissions

BBFreelancer always has proxy contract over each contract to make the contract upgradeability. They are has Admin permision is allowed to write to BBStorage contract

How to work with Bigbom Freelancer DApp

Ropsten Contract Information

	BBO: 0x1d893910d30edc1281d97aecfe10aefeabe0c41b

	proxyAddressJob: 0x62aa93f9dffec25daf9d2955d468194e996e8c87

	proxyAddressBid: 0x0ff11890ef301dfd0fb37e423930b391836c69c9

	proxyAddressPayment: 0x7b7e6f2b02a48bd24b5b1554fafff5f70547ab0a

Example

	Job Status
0 : init
1 : start
2 : finish
4 : reject
5 : claim Payment
9 : accept Payment

	Create new job

let job = await BBFreelancerJob.at(proxyAddressJob);
var userA = '0x12312321';
var expiredTime = parseInt(Date.now()/1000) + 7 * 24 * 3600; // expired after 7 days
var totalTime = 3 * 24 * 3600;// requirement job done in 3 days
// createJob: jobHash, expiredTime, totalTime,budget, category
var jobLog = await job.createJob(jobHash, expiredTime, totalTime, 500e18, 'banner', {from:userA});
// check event logs

	cancel job

 var jobLog = await job.cancelJob(jobHash, {from:userA});

	create bid

 var userB = '0x98988997897';
 let bid = await BBFreelancerBid.at(proxyAddressBid);
 var timeDone = 2 * 24 * 3600; //Freelancer suggest time done affer 2 days
 var jobLog = await bid.createBid(jobHash, 400e18, timeDone,{from:userB});

	cancel bid

 var jobLog = await bid.cancelBid(jobHash, {from:userB});

	acceept bid

 var userA = '0x12312321';
 let bid = await BBFreelancerBid.at(proxyAddressBid);
 let bbo = await BBO.at(BBOAddress);// abi BBO contract
 // approve bid's BBO amount to contract proxyAddressBid
 await bbo.approve(proxyAddressBid, 400e18, {from:userA});
 // call accept function
 var jobLog = await bid.acceptBid(jobHash, accounts[1], {from:userA});

	start working job

 var jobLog = await job.startJob(jobHash, {from:userB});

	finish job

 var jobLog = await job.finishJob(jobHash, {from:userB});

	reject payment

 let payment = await BBFreelancerPayment.at(proxyAddressPayment);
 var userA = '';
 var jobLog = await payment.rejectPayment(jobHash, {from:userA});

	claime payment

 let payment = await BBFreelancerPayment.at(proxyAddressPayment);
 var userB = '';
 var jobLog = await payment.claimePayment(jobHash, {from:userB});

	acceept payment

 var jobLog = await payment.acceptPayment(jobHash, {from:userA});

	get job by Hash

 let job = await BBFreelancerJob.at(proxyAddressJob);
 var jobLog = await job.getJob(jobHash);
 // return [owner, expired, budget, cancel, status, freelancer]

	view list job

// event JobCreated(bytes jobHash, address indexed owner, uint created, string category);

BBFreelancerJob.at(proxyAddressJob).getPastEvents('JobCreated', {
 filter: {owner: '0x123', category: ['banner','it']}, // filter by owner, category
 fromBlock: 0, // should use recent number
 toBlock: 'latest'
}, function(error, events){
 //TODO
 });

Event lists:

	event JobCreated(bytes jobHash, address indexed owner, uint expired, bytes32 indexed category, uint256 budget);

	event JobCanceled(bytes jobHash);

	event JobStarted(bytes jobHash);

	event JobFinished(bytes jobHash);

	event BidCreated(bytes jobHash, address indexed owner, uint256 bid, uint created);

	event BidCanceled(bytes jobHash, address indexed owner);

	event BidAccepted(bytes jobHash, address indexed freelancer);

	event PaymentClaimed(bytes jobHash, address indexed sender);

	event PaymentAccepted(bytes jobHash, address indexed sender);

	event PaymentRejected(bytes jobHash, address indexed sender);

Ethereum Mainnet

Ropsten Testnet

var proxyAddressJob = '0xb1e878028d0e3e47c803cbb9d1684d9d3d72a1b1'
var proxyAddressBid = '0x7b388ecfec2f5f706aa34b540a39e8c434cfc8b4'
var proxyAddressPayment = '0x253f112b946a72a008343d5bccd14e04288ca45c'
var storageAddress = '0x99a2c9bc3793cc72a7a9b352e97deece4f4961c7'

var proxyFactAddress = '0xac141d2fa2740bd57e5c035a811b6fb6cceb4b71'
var paramsProxy = '0xc0647055b50dce8751908bfbd7f1d219ed592d6f'
var disputeProxy = '0x2b44a5589e8b3cd106a7542d4af9c5eb0016ef6e'
var votingProxy = '0xc7252214d78b15f37b94ae73027419a9f275c36f'
var bbo = '0x1d893910d30edc1281d97aecfe10aefeabe0c41b'
var votingHelperProxy = '0x771911025b4eafb6395042b7dca728b275e5d8c0'

Rinkeby Testnet

proxyAddressJob 0x71356605e4f79fd07b01cc187bdcbc1f4025db1f
proxyAddressBid 0xf01cc898b9245930a345bec82423b87f602cb8e4
proxyAddressPayment 0x22ce61d3c44e5a005a9b9f4485cfbc660c1c2ef3
BBOAddress 0x2ddc511802a37039c42c6bdb36028b2f8992b0fe
BBStorage: 0x7f4f85ed6fb35be5ab03272f95b73dfe4b491243

var proxyFactAddress = '0x46820d60ca35cab8103a332804c8c889358ec66f';

BBOFaucet: 0xab4c08e651c709644a58a6ebd8e1be3afa6aa34c

paramsProxy 0xb1b1e7f9223bca9d66aa97b773935d4aec13165d
disputeProxy 0x278636913d5203a057adb7e0521b8df9431bdaa5
votingProxy 0x54a7cb877948518444e4c97c426cf47718ac94c3

Tomochain

var proxyAddressJob = '0x57d83ffc5b5bacb5ed7dcbd86303c36c1e90080f'
var proxyAddressBid = '0x5c16dd2b3d444004b842a6fec13fab9d0d3bdc7f'
var proxyAddressPayment = '0x326486e00ed560538ec19887851fdfdf8dec40bb'
var storageAddress = '0xe67dc1a983d213b8f7302e21b883afff9fc588d7'
var proxyFactAddress = '0x45928f6ce178ce80874183038098b89f9fc59cfd'

var BBOAddress = '0x343aa154194f5d99cc28598b009ec23723b5a439'

paramsProxy = '0x315cf0a2c4e5dbee4cd8cf25c55d95b4badb364b'
disputeProxy = '0xdb5134f53d003d478a71973543f187304097b039'
votingProxy = '0x9899fcb82031f8cba60eb13d6e93e88365256612'

BBOFaucet: 0x1504d8a81492c60e47aeba16e89a7b04d23c6261

DApps Integration Guide

BBFreelancer

Contract BBFreelancer is BBStandard

imports: BBStandard.sol

Source: BBFreelancer.sol

BBFreelancer is modifiers contract used for BBFreelancerBid, BBFreelancerJob, BBFreelancerPayment

	Modifiers

	jobNotExist

	isFreelancerOfJob

	isNotOwnerJob

	isOwnerJob

	isNotCanceled

	jobNotStarted

Modifiers

jobNotExist

Require job hash not exist in BBFreelancer System

modifier jobNotExist(bytes jobHash)

	Parameter
	Type
	Description

	jobHash
	bytes
	Hash of job stored in IPFS

isFreelancerOfJob

Require the sender is the freelancer of this Job ID

modifier isFreelancerOfJob(bytes jobHash)

	Parameter
	Type
	Description

	jobID
	uint256
	ID of Job

isNotOwnerJob

Require the sender is not the owner of this Job ID

modifier isNotOwnerJob(unit256 jobID)

	Parameter
	Type
	Description

	jobID
	uint256
	ID of Job

isOwnerJob

Require the sender is the owner of this Job ID

modifier isOwnerJob(unit256 jobID)

	Parameter
	Type
	Description

	jobID
	uint256
	ID of Job

isNotCanceled

Require this Job ID is not canceled yet

modifier isNotCanceled(jobID uint256)

	Parameter
	Type
	Description

	jobID
	uint256
	ID of Job

jobNotStarted

Require this Job ID is not started yet

modifier jobNotStarted(bytes uint256)

	Parameter
	Type
	Description

	jobID
	uint256
	ID of Job

BBFreelancerJob

Contract BBFreelancerJob is BBFreelancer

imports: BBFreelancerPayment.sol, BBLib.sol, BBFreelancer.sol,BBRatingInterface.sol

Source: BBFreelancerJob.sol

BBFreelancerJob is the contract implements Job Posting actions for Freelancer app

	Events

	JobCreated

	JobCanceled

	JobStarted

	JobFinished

	Functions

	getJob

	createJob

	cancelJob

	startJob

	finishJob

	getJobID

	allowRating

Events

JobCreated

Event for logging new Job creations.

event JobCreated(bytes jobHash, uint256 indexed jobID, address indexed owner, uint expired, bytes32 indexed category, uint256 budget, uint256 estimateTime);

	Parameter
	Type
	Description

	jobHash
	bytes
	Hash of the job store on IPFS

	jobID
	uint256
	ID the job

	owner
	address
	address of the creator

	expired
	uint256
	total time allow the freelancer can bid this job(stored as second)

	category
	bytes32
	Hash keccak256 of the category, allow client can filter job by category

	budget
	uint256
	Max amount the hirer can pay for this job

	estimateTime
	uint256
	Max time for freelancer can do this job (stored as second)

JobCanceled

Event for logging canceled job.

event JobCanceled(bytes jobHash);

	Parameter
	Type
	Description

	jobID
	uint256
	ID of the job

JobStarted

Event for logging started job.

event JobStarted(bytes jobHash);

	Parameter
	Type
	Description

	jobID
	uint256
	ID of the job

JobFinished

Event for logging finished job.

event JobFinished(uint256 jobID);

	Parameter
	Type
	Description

	jobID
	uint256
	ID of the job

Functions

getJobID

Get jobID by jobHash

function getJobID(bytes jobHash) public view returns(uint256)

	Parameter
	Type
	Description

	jobHash
	bytes
	Hash of the job store on IPFS

Returns:

	Return
	Type
	Description

	jobID
	address
	ID of the job

getJob

Get job detail by job hash.

function getJob(uint256 jobID) public view returns(address, uint256, uint256, bool, uint256, address)

	Parameter
	Type
	Description

	jobHash
	bytes
	Hash of the job store on IPFS

Returns:

	Return
	Type
	Description

	owner
	address
	owner of this job

	expired
	uint256
	job bidding expired timestamp

	budget
	uint256
	job buget

	cancel
	bool
	true if job is canceled

	status
	uint256
	see status

	freelancer
	address
	address of the freelancer of this job

createJob

Post new job

function createJob(bytes jobHash, uint expired ,uint estimateTime, uint256 budget, bytes32 category) public
jobNotExist(jobHash)

	Parameter
	Type
	Description

	jobHash
	bytes
	Hash of the job store on IPFS

	expired
	uint256
	job bidding expired timestamp

	estimateTime
	uint256
	Max time for freelancer can do this job (stored as second)

	budget
	uint256
	max job buget

	category
	bytes32
	Hash keccak256 of the category, allow client can filter job by category

Modifiers: jobNotExist

cancelJob

Cancel a job by jobHash

function cancelJob(bytes jobHash) public
isOwnerJob(jobHash)

	Parameter
	Type
	Description

	jobID
	uint256
	ID of the job

Modifiers: isOwnerJob

startJob

Start working on a job by jobHash

function startJob(uint256 jobID) public
isNotCanceled(jobID)
jobNotStarted(jobID)
isFreelancerOfJob(jobID)

	Parameter
	Type
	Description

	jobID
	uint256
	ID of the job

Modifiers: isNotCanceled, jobNotStarted, isFreelancerOfJob

finishJob

Finish working on a job by jobHash

function finishJob(uint256 jobID) public
isNotOwnerJob(jobID)
isFreelancerOfJob(jobID)

	Parameter
	Type
	Description

	jobID
	uint256
	ID of the job

Modifiers: isNotOwnerJob, isFreelancerOfJob

allowRating

Check rule Rating of user

function allowRating(address sender ,address rateTo, uint256 jobID) public view returns(bool)

	Parameter
	Type
	Description

	sender
	address
	user is rating

	rateTo
	address
	user is being rating

	jobID
	uint256
	ID of job

Implement: allowRating

status

Job status mapping

	status
	Description

	0
	Job Initial

	1
	Job Started

	2
	Job Finished

	4
	Job Payment Rejected

	5
	Job Payment Claimed

	6
	Job has Dispute (in-voting)

	9
	Job Payment Accepted

BBFreelancerBid

Contract BBFreelancerBid is BBFreelancer

imports: BBFreelancerPayment.sol, BBLib.sol, BBFreelancer.sol

Source: BBFreelancerBid.sol

BBFreelancerBid is the contract implements Bidding actions for Freelancer app

	Events

	BidCreated

	BidCanceled

	BidAccepted

	Functions

	setPaymentContract

	createBid

	cancelBid

	acceptBid

Events

BidCreated

Event for logging Bid creations.

event BidCreated(uint256 indexed jobID , address indexed owner, uint256 bid, uint256 bidTime)

	Parameter
	Type
	Description

	jobID
	uint256
	job ID

	owner
	address
	address of the creator

	bid
	uint256
	amount BBO for this Bid

	bidTime
	uint256
	total work hours for this bid (stored as second)

BidCanceled

Event for logging the canceled Bid .

event BidCanceled(uint256 indexed jobID, address indexed owner);

	Parameter
	Type
	Description

	jobID
	uint256
	`job ID

	owner
	address
	address of the creator

BidAccepted

Event for logging Bid creations.

event BidAccepted(uint256 indexed jobID , address indexed freelancer);

	Parameter
	Type
	Description

	jobID
	uint256
	job ID

	freelancer
	address
	address of the creator of this bid

Functions

setPaymentContract

Set the address of the FreelancerPayment contract. Only invoked by owner.

function setPaymentContract(address paymentAddress) onlyOwner public

	Parameter
	Type
	Description

	paymentAddress
	address
	the address of the FreelancerPayment contract

createBid

Allow the freelancer to create new bid for job hash.

function createBid(uint256 jobID, uint256 bid, uint bidTime) public
isNotOwnerJob(jobID)
isNotCanceled(jobID)
jobNotStarted(jobID)

	Parameter
	Type
	Description

	jobID
	uint256
	job ID

	bid
	uint256
	amount BBO for this Bid

	bidTime
	uint256
	total work hours for this bid (stored as second)

Modifiers: isNotOwnerJob, isNotCanceled, jobNotStarted

cancelBid

Allow the freelancer to cancel the bid by job hash.

function cancelBid(uint256 jobID) public isNotOwnerJob(jobHash)

	Parameter
	Type
	Description

	jobHash
	bytes
	job Hash

Modifiers: isNotOwnerJob

acceptBid

Allow the hirer to accept the bid for job hash.

function acceptBid(bytes jobHash, address freelancer) public

	Parameter
	Type
	Description

	jobID
	uint256
	job ID

	freelancer
	address
	address of the bid want to accept

BBFreelancerPayment

Contract BBFreelancerPayment is BBFreelancer

imports: BBFreelancer.sol, BBLib.sol

Source: BBFreelancerPayment.sol

BBFreelancerPayment is the contract control the payment for Freelancer app

	BBFreelancerPayment

	Events

	PaymentClaimed

	PaymentClaimed

	PaymentRejected

	DisputeFinalized

	Functions

	acceptPayment

	rejectPayment

	claimePayment

	checkPayment

	finalizeDispute

	refundBBO

Events

PaymentClaimed

Event for loging payment claimed.

event PaymentClaimed(uint256 jobID, address indexed sender);

	Parameter
	Type
	Description

	jobID
	uint256
	ID of Job

	sender
	address
	user call claim payment

	jobHash
	bytes
	Hash of the job store on IPFS

PaymentClaimed

Event for loging payment accepted.

event PaymentAccepted(uint256 jobID, address indexed sender);

	Parameter
	Type
	Description

	jobID
	uint256
	ID of Job

	sender
	address
	user call accept payment

	jobHash
	bytes
	Hash of the job store on IPFS

PaymentRejected

Event for loging payment rejected.

event PaymentRejected(bytes32 indexed indexJobHash, address indexed sender, uint reason, uint256 rejectedTimestamp, bytes jobHash);

	Parameter
	Type
	Description

	jobID
	uint256
	ID of Job

	sender
	address
	user call reject payment

	reason
	uint
	reason for rejection

	rejectedTimestamp
	uint
	rejected timetamp

	jobHash
	bytes
	Hash of the job store on IPFS

DisputeFinalized

Event for loging payment claim.

event DisputeFinalized(uint256 jobID, address indexed winner);

	Parameter
	Type
	Description

	jobID
	uint256
	ID of Job

	winner
	address
	address has won the dispute

	jobHash
	bytes
	Hash of the job store on IPFS

Functions

acceptPayment

Hirer accept the payment when the freelancer done the job

function acceptPayment(uint256 jobID) public
isOwnerJob(jobHash)

	Parameter
	Type
	Description

	jobID
	uint256
	ID of job

Modifiers: isOwnerJob

rejectPayment

Hirer reject the payment when the freelancer done the job

function rejectPayment(bytes jobHash, uint reason) public
isOwnerJob(jobHash)

	Parameter
	Type
	Description

	jobID
	uint256
	ID of job

	reason
	uint
	reason for rejection

Modifiers: isOwnerJob

claimePayment

The freelancer can claim the payment if the hirer does not accept/reject after X duration.

function claimePayment(uint256 jobID) public isFreelancerOfJob(jobHash)

	Parameter
	Type
	Description

	jobID
	uint256
	ID of job

Modifiers: isFreelancerOfJob

checkPayment

The freelancer can check the payment of this job for ready claim

function checkPayment(uint256 jobID) public view returns(uint256, uint256)

	Parameter
	Type
	Description

	jobID
	uint256
	ID of job

Returns:

	Parameter
	Type
	Description

	status
	uint256
	status of job

	pendingDate
	uint256
	after this date freelancer can claim the payment

finalizeDispute

Finalize dispute job and send payment for the winer

function finalizeDispute(bytes jobHash) public returns(bool)

	Parameter
	Type
	Description

	jobID
	uint256
	ID of job

refundBBO

refund token to hirer if canceled

function refundBBO(bytes jobHash) public returns(bool) {

	Parameter
	Type
	Description

	jobID
	uint256
	ID of job

BBStorage

Contract BBStorage is Ownable

imports: Ownable.sol

Source: BBStorage.sol

BBStorage is key-value type storage:

 mapping(bytes32 => uint256) private uIntStorage;
 mapping(bytes32 => string) private stringStorage;
 mapping(bytes32 => address) private addressStorage;
 mapping(bytes32 => bytes) private bytesStorage;
 mapping(bytes32 => bool) private boolStorage;
 mapping(bytes32 => int256) private intStorage;

	Modifiers

	onlyAdminStorage

	Events

	AdminAdded

	Functions

	addAdmin

	getAddress

	getUint

	getString

	getBytes

	getBool

	getInt

	setAddress

	setUint

	setString

	setBytes

	setBool

	setInt

	deleteAddress

	deleteUint

	deleteString

	deleteBytes

	deleteBool

	deleteInt

Modifiers

onlyAdminStorage

Only allow access from the admin storage mapping, use for write/delete data

modifier onlyAdminStorage()

Events

AdminAdded

Event for logging admin additions or removals from the storage contract.

event AdminAdded(address indexed admin, bool add)

	Parameter
	Type
	Description

	admin
	address
	address can write/edit data

	add
	bool
	true if admin was successfully added, false to removed

Functions

addAdmin

add/delete admin to allow write/delete storage object. Only owner can invoke.

function addAdmin(address admin, bool add) public onlyOwner

	Parameter
	Type
	Description

	admin
	address
	address can write/edit data

	add
	bool
	true to add, false to remove

modifier: onlyOwner

getAddress

Get address value from storage mapping by key

function getAddress(bytes32 _key) external view returns (address)

	Parameter
	Type
	Description

	_key
	bytes32
	hash keccak256 of the key

Returns: address value

getUint

Get uint256 value from storage mapping by key

function getUint(bytes32 _key) external view returns (uint256)

	Parameter
	Type
	Description

	_key
	bytes32
	hash keccak256 of the key

Returns: uint256 value

getString

Get string value from storage mapping by key

function getString(bytes32 _key) external view returns (string)

	Parameter
	Type
	Description

	_key
	bytes32
	hash keccak256 of the key

Returns: string value

getBytes

Get bytes value from storage mapping by key

function getBytes(bytes32 _key) external view returns (bytes)

	Parameter
	Type
	Description

	_key
	bytes32
	hash keccak256 of the key

Returns: bytes value

getBool

Get bool value from storage mapping by key

function getBool(bytes32 _key) external view returns (bool)

	Parameter
	Type
	Description

	_key
	bytes32
	hash keccak256 of the key

Returns: bool value

getInt

Get int value from storage mapping by key

function getInt(bytes32 _key) external view returns (int)

	Parameter
	Type
	Description

	_key
	bytes32
	hash keccak256 of the key

Returns: int value

setAddress

Set address value to storage mapping by key

function setAddress(bytes32 _key, address _value) onlyAdminStorage external

	Parameter
	Type
	Description

	_key
	bytes32
	hash keccak256 of the key

	_value
	address
	address value

Modifier: onlyAdminStorage

setUint

Set uint256 value to storage mapping by key

function setUint(bytes32 _key, uint256 _value) onlyAdminStorage external

	Parameter
	Type
	Description

	_key
	bytes32
	hash keccak256 of the key

	_value
	uint256
	uint256 value

Modifier: onlyAdminStorage

setString

Set string value to storage mapping by key

function setString(bytes32 _key, string _value) onlyAdminStorage external

	Parameter
	Type
	Description

	_key
	bytes32
	hash keccak256 of the key

	_value
	string
	string value

Modifier: onlyAdminStorage

setBytes

Set bytes value to storage mapping by key

function setBytes(bytes32 _key, bytes _value) onlyAdminStorage external

	Parameter
	Type
	Description

	_key
	bytes32
	hash keccak256 of the key

	_value
	bytes
	bytes value

Modifier: onlyAdminStorage

setBool

Set bool value to storage mapping by key

function setBool(bytes32 _key, bool _value) onlyAdminStorage external

	Parameter
	Type
	Description

	_key
	bytes32
	hash keccak256 of the key

	_value
	bool
	bool value

Modifier: onlyAdminStorage

setInt

Set int value to storage mapping by key

function setInt(bytes32 _key, int _value) onlyAdminStorage external

	Parameter
	Type
	Description

	_key
	bytes32
	hash keccak256 of the key

	_value
	int
	int value

Modifier: onlyAdminStorage

deleteAddress

delete address value from storage mapping by key

function deleteAddress(bytes32 _key) onlyAdminStorage external

	Parameter
	Type
	Description

	_key
	bytes32
	hash keccak256 of the key to delete

Modifier: onlyAdminStorage

deleteUint

delete unit256 value from storage mapping by key

function deleteUint(bytes32 _key) onlyAdminStorage external

	Parameter
	Type
	Description

	_key
	bytes32
	hash keccak256 of the key to delete

Modifier: onlyAdminStorage

deleteString

delete string value from storage mapping by key

function deleteString(bytes32 _key) onlyAdminStorage external

	Parameter
	Type
	Description

	_key
	bytes32
	hash keccak256 of the key to delete

Modifier: onlyAdminStorage

deleteBytes

delete bytes value from storage mapping by key

function deleteBytes(bytes32 _key) onlyAdminStorage external

	Parameter
	Type
	Description

	_key
	bytes32
	hash keccak256 of the key to delete

Modifier: onlyAdminStorage

deleteBool

delete bool value from storage mapping by key

function deleteBool(bytes32 _key) onlyAdminStorage external

	Parameter
	Type
	Description

	_key
	bytes32
	hash keccak256 of the key to delete

Modifier: onlyAdminStorage

deleteInt

delete int value from storage mapping by key

function deleteInt(bytes32 _key) onlyAdminStorage external

	Parameter
	Type
	Description

	_key
	bytes32
	hash keccak256 of the key to delete

Modifier: onlyAdminStorage

BBDocumentSign

BBLib

BBStandard

Contract BBStandard is Ownable

imports: Ownable.sol, SafeMath.sol, BBStorage.sol, ERC20.sol

Source: BBStandard.sol

BBStandard is standard contract implements the key-value storage from BBStorage, and use BBO ERC20 token for payment

	BBStandard

	Functions

	setStorage

	setBBO

	withdrawTokens

Functions

setStorage

set Storage contract address. Only owner can invoke.

function setStorage(address storageAddress) onlyOwner public

	Parameter
	Type
	Description

	storageAddress
	address
	address of the storage contract

modifier: onlyOwner

setBBO

set BBO token contract address. Only owner can invoke.

function setBBO(address BBOAddress) onlyOwner public

	Parameter
	Type
	Description

	BBOAddress
	address
	address of the BBO token contract

modifier: onlyOwner

withdrawTokens

withdraw any token in the contract. Only owner can invoke.

function withdrawTokens(ERC20 anyToken) public onlyOwner

	Parameter
	Type
	Description

	anyToken
	ERC20
	address of the token

modifier: onlyOwner

BBParams

BBDispute

Contract BBDispute is BBStandard

imports: BBStandard.sol, BBLib.sol, BBFreelancerPayment.sol

Source: BBDispute.sol

BBDispute is the contract implements Poll creation actions for creating dispute in Freelancer app

	Events

	PollStarted

	PollAgainsted

	PollFinalized

	PollWhiteFlaged

	PollExtended

	Functions

	setPayment

	isAgaintsPoll

	startPoll

	againstPoll

	getPoll

	finalizePoll

	whiteflagPoll

	extendPoll

Events

PollStarted

Event for logging start new poll.

event PollStarted(uint256 jobID, address indexed creator);

	Parameter
	Type
	Description

	jobID
	uint256
	ID of job

	proofHash
	proofHash
	Hash of the job evident stored on IPFS

	creator
	address
	address who start the Poll

	jobHash
	bytes32
	the jobHash store on IPFS

PollAgainsted

Event for logging against the exist poll.

event PollAgainsted(uint256 jobID, address indexed creator);

	Parameter
	Type
	Description

	jobID
	uint256
	ID of job

	proofHash
	proofHash
	Hash of the job evident stored on IPFS

	creator
	address
	address who against the Poll

	jobHash
	bytes32
	Hash of the jobHash store on IPFS

PollFinalized

Event for logging against the exist poll.

event PollFinalized(uint256 jobID, uint256 jobOwnerVotes, uint256 freelancerVotes, bool isPass);

	Parameter
	Type
	Description

	jobID
	uint256
	ID of job

	jobOwnerVotes
	uint256
	number of votes for the hirer of this job

	freelancerVotes
	uint256
	number of votes for the freelancer of this job

	jobHash
	bytes
	Hash of the jobHash store on IPFS

PollWhiteFlaged

Event for logging White-Flaged.

event PollWhiteFlaged(uint256 indexed jobID, address indexed creator);

	Parameter
	Type
	Description

	jobID
	uint256
	ID of job

	creator
	address
	who fire white-flag a dispute

	jobHash
	bytes
	Hash of the jobHash store on IPFS

PollExtended

Event for logging Extend a Voting duration.

event PollExtended(uinit56 indexed jobID);

	Parameter
	Type
	Description

	jobID
	uint256
	ID of job

Functions

setPayment

set Payment contract address. Only owner can invoke.

function setPayment(address p) onlyOwner public

	Parameter
	Type
	Description

	p
	address
	address of the payment contract

modifier: onlyOwner

isAgaintsPoll

Check this Poll started for the job Hash has againts or not

function isAgaintsPoll(uint256 jobID) public constant returns(bool)

	Parameter
	Type
	Description

	jobID
	uint256
	ID of job

Return: (Bool)

startPoll

Create a Poll to start Dispute by provide the evident proofHash

function startPoll(uint256 jobID, bytes proofHash) public

	Parameter
	Type
	Description

	jobID
	uint256
	ID of job

	proofHash
	bytes
	Hash of the job evident stored on IPFS

againstPoll

Against a Poll to start Dispute by provide the evident proofHash.

function againstPoll(unit256 jobID, bytes againstProofHash) public

	Parameter
	Type
	Description

	jobID
	uint256
	ID of job

	againstProofHash
	bytes
	Hash of the job evident stored on IPFS

getPoll

Get Poll detail

function getPoll(uint256 jobID) public constant returns (uint256, uint256, bool)

	Parameter
	Type
	Description

	jobID
	uint256
	ID of job

Returns:

	Parameter
	Type
	Description

	jobOwnerVotes
	uint256
	number of votes for the hirer of this job

	freelancerVotes
	uint256
	number of votes for the freelancer of this job

finalizePoll

Finalize a Poll

function finalizePoll(uint256 jobID) public

	Parameter
	Type
	Description

	jobID
	uint256
	ID of job

whiteflagPoll

White-flag a Poll

function whiteflagPoll(uint256 jobID) public

	Parameter
	Type
	Description

	jobID
	uint256
	ID of job

extendPoll

Extend a Poll

function extendPoll(uint256 jobID) public

	Parameter
	Type
	Description

	jobID
	uint256
	ID of job

BBVoting

Contract BBVoting is BBStandard

imports: BBStandard.sol, BBLib.sol

Source: BBVoting.sol

BBVoting is the contract implements Partial-Lock Commit-Reveal Voting
for allow voter can help to reslove the dispute in Freelancer app

	Events

	VotingRightsGranted

	VotingRightsWithdrawn

	VoteCommitted

	VoteRevealed

	Modifiers

	isDisputeJob

	Functions

	isAgaintsPoll

	setBBOReward

	requestVotingRights

	withdrawVotingRights

	checkBalance

	commitVote

	revealVote

	checkHash

	claimReward

	calcReward

Events

VotingRightsGranted

Event for logging the voter request the voting rights.

event VotingRightsGranted(address indexed voter, uint256 numTokens);

	Parameter
	Type
	Description

	voter
	address
	address of the voter

	numTokens
	uint256
	the BBO number of the voter request

VotingRightsWithdrawn

Event for logging the voter withdraw voting rights

event VotingRightsWithdrawn(address indexed voter, uint256 numTokens);

	Parameter
	Type
	Description

	voter
	address
	address of the voter

	numTokens
	uint256
	the number of BBO withdrawn

VoteCommitted

Event for logging the voter commit vote for job hash

event VoteCommitted(address indexed voter, uint256 jobID);

	Parameter
	Type
	Description

	voter
	address
	address of the voter

	jobID
	uint256
	ID of job

VoteRevealed

Event for logging the voter reveal the commit vote

event VoteRevealed(address indexed voter, uint256 jobID, bytes32 secretHash);

	Parameter
	Type
	Description

	voter
	address
	address of the voter

	jobID
	uint256
	ID of job

	secretHash
	bytes32
	the hash of commit vote

Modifiers

isDisputeJob

Check the job hash is the dispute job

modifier isDisputeJob(uint256 jobID){
 uint256 jobStatus = bbs.getUint(BBLib.toB32(jobID,'JOB_STATUS'));
 require(jobStatus == 4);
 require(bbs.getAddress(BBLib.toB32(jobID, 'DISPUTE_WINNER'))==address(0x0));
 _;
 }

Functions

isAgaintsPoll

Check this Poll started for the job Hash has againts or not

function isAgaintsPoll(uint256 jobID) public constant returns(bool)

	Parameter
	Type
	Description

	jobID
	uint256
	ID of job

Return: (Bool)

setBBOReward

Set bbo reward address, use for send reward to the voter. Only owner can invoke

function setBBOReward(address rewardAddress) onlyOwner public

	Parameter
	Type
	Description

	rewardAddress
	bytes
	bbo reward address

requestVotingRights

The voter request voting rights by lock the number token, each locked token is 1 vote

function requestVotingRights(uint256 numTokens) public

	Parameter
	Type
	Description

	numTokens
	uint256
	number of token to lock

withdrawVotingRights

The voter withdraw the locked token

function withdrawVotingRights(uint256 numTokens) public

	Parameter
	Type
	Description

	numTokens
	uint256
	number of token to withdraw

checkBalance

check the locked token balance

function checkBalance() public view returns(uint256 tokens)

Return:

	Parameter
	Type
	Description

	tokens
	uint256
	number of locked token

commitVote

Voter commit vote for the dispute job

function commitVote(uint256 jobID, bytes32 secretHash, uint256 tokens) public
isDisputeJob(jobHash)

	Parameter
	Type
	Description

	jobID
	uint256
	ID of job

	secretHash
	bytes32
	keccak256(choice, salt)

	tokens
	uint256
	number of token vote for this job

Modifiers: isDisputeJob

revealVote

Voter reveal vote for the dispute job

function revealVote(unit256 jobID, address choice, uint salt) public
isDisputeJob(jobHash)

	Parameter
	Type
	Description

	jobID
	uint256
	ID of job

	choice
	address
	address of hirer/freelancer choice from commit stage

	salt
	uint256
	secret salt to encrypt secretHash

Modifiers: isDisputeJob

checkHash

Voter can check the secretHash

function checkHash(uint256 jobID, address choice, uint salt) public view returns(bool)

	Parameter
	Type
	Description

	jobID
	uint256
	ID of job

	choice
	address
	address of hirer/freelancer choice from commit stage

	salt
	uint256
	secret salt to encrypt secretHash

claimReward

Voter claim reward

function claimReward(uint256 jobID) public

	Parameter
	Type
	Description

	jobID
	uint256
	ID of job

calcReward

Calculate the reward of the dispute job hash

function calcReward(uint256 jobID) constant public returns(uint256 numReward)

	Parameter
	Type
	Description

	jobID
	uint256
	ID of job

Return: Number of reward.

AdminUpgradeabilityProxy

Index

BBVoting

Contract BBRating is BBStandard

imports: BBStandard.sol, BBLib.sol

Source: BBRating.sol

BBRating is the contract allow user can rate something in another contract

	Events

	Rating

	Functions

	rate

	allowRating

Events

Rating

Event for logging data of rating.

event Rating(uint256 jobID, address whoRate ,address indexed rateToAddress,uint256 totalStar, uint256 totalUser ,uint256 star, bytes commentHash);

	Parameter
	Type
	Description

	jobID
	uint256
	id of Job

	whoRate
	address
	address of user rate this

	rateToAddress
	address
	address of rating

	totalStar
	uint256
	total star for address

	totalUser
	uint256
	total user rate address

	star
	uint256
	value rating of user (1 - 5)

	commentHash
	bytes
	Hash of the comment store on IPFS

Functions

rate

do Rating

function rate(address rateToAddress, uint256 jobID, uint256 value, bytes commentHash) public

	Parameter
	Type
	Description

	rateToAddress
	address
	rate to adress in contract

	jobID
	uint256
	ID of job

	value
	uint
	value of rating

	commentHash
	bytes
	Hash of the comment store on IPFS

allowRating

function allowRating(address sender, address rateToAddress, uint256 jobID) private returns(bool)

	Parameter
	Type
	Description

	sender
	address
	address of user rate this

	rateToAddress
	address
	address of rating

	jobID
	uint256
	ID of job

 _images/digital-contract-code-flow.png
‘Advertiser

Smart Contract

Bigbom Platform

‘Ads Platform/Publisher

Contract Due

e

(Campaign Stert

Campaign
Data

_static/comment-bright.png

_images/digital_contract_sign_workflow.png
Digital Sign using Smart Contract

User A Smart Contract Storage UserB
Prepare
Contract \\
i
v
No
Store
Upload PDF 2 (docHash,
dociD)
s
v
Sending N
Invitation
—T Digital
Document
5 Contract
7 Approval
Sign (pkey, | 8]
docHash)

Add docHash

Add signer

(address,
signature)

Yes

Sign (pkey,

docHash)

_static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_images/Freelancer-Stack.png
Client

Interface

Nodes

Ethereun
Blockehain

Meta Mask

o -
aan . ety
8B eeincer Conact R
e I p—— fr—
Pl g —— p——
po—

—)

_images/ads-contracts-execution-tracking.png
Digital Advertising Campaign Lifecycle

sy H

_images/Freelancer-High-level-Overview.png
Hirer

BBFreslancer/ob

BBFreslancerBid

BBFreslancerPayment

croate now job roquest

view st bid or ajob.

accopt bid & deposit

eposit 830

et paymant

accept payment

freslancer

View st vald joo

bidajob

start working job

complete working job

claims payment

_images/ads-payment-flow.png
‘Advertiser Smart Contract Bigbom Platform ‘Ads Platform

Campaign
Data

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 Welcome to Bigbom Digital Contracts’s documentation!

 		
 Bigbom Digital Contract Platform Technical Paper

 		
 A brief history on contract signing

 		
 The introduction of Bigbom Digital Contract

 		
 E-Signing:

 		
 Digital Contract Verification & Payment:

 		
 Freelancer Smart Contract Architecture

 		
 Introduction

 		
 High-level Overview

 		
 Detailed Hirer Flow

 		
 Detailed Freelancer Flow

 		
 Stack

 		
 Permissions

 		
 How to work with Bigbom Freelancer DApp

 		
 Ropsten Contract Information

 		
 Example

 		
 Event lists:

 		
 Ethereum Mainnet

 		
 Ropsten Testnet

 		
 Rinkeby Testnet

 		
 Tomochain

 		
 DApps Integration Guide

 		
 BBFreelancer

 		
 Modifiers

 		
 jobNotExist

 		
 isFreelancerOfJob

 		
 isNotOwnerJob

 		
 isOwnerJob

 		
 isNotCanceled

 		
 jobNotStarted

 		
 BBFreelancerJob

 		
 Events

 		
 JobCreated

 		
 JobCanceled

 		
 JobStarted

 		
 JobFinished

 		
 Functions

 		
 getJobID

 		
 getJob

 		
 createJob

 		
 cancelJob

 		
 startJob

 		
 finishJob

 		
 allowRating

 		
 status

 		
 BBFreelancerBid

 		
 Events

 		
 BidCreated

 		
 BidCanceled

 		
 BidAccepted

 		
 Functions

 		
 setPaymentContract

 		
 createBid

 		
 cancelBid

 		
 acceptBid

 		
 BBFreelancerPayment

 		
 Events

 		
 PaymentClaimed

 		
 PaymentClaimed

 		
 PaymentRejected

 		
 DisputeFinalized

 		
 Functions

 		
 acceptPayment

 		
 rejectPayment

 		
 claimePayment

 		
 checkPayment

 		
 finalizeDispute

 		
 refundBBO

 		
 BBStorage

 		
 Modifiers

 		
 onlyAdminStorage

 		
 Events

 		
 AdminAdded

 		
 Functions

 		
 addAdmin

 		
 getAddress

 		
 getUint

 		
 getString

 		
 getBytes

 		
 getBool

 		
 getInt

 		
 setAddress

 		
 setUint

 		
 setString

 		
 setBytes

 		
 setBool

 		
 setInt

 		
 deleteAddress

 		
 deleteUint

 		
 deleteString

 		
 deleteBytes

 		
 deleteBool

 		
 deleteInt

 		
 BBDocumentSign

 		
 BBLib

 		
 BBStandard

 		
 Functions

 		
 setStorage

 		
 setBBO

 		
 withdrawTokens

 		
 BBParams

 		
 BBDispute

 		
 Events

 		
 PollStarted

 		
 PollAgainsted

 		
 PollFinalized

 		
 PollWhiteFlaged

 		
 PollExtended

 		
 Functions

 		
 setPayment

 		
 isAgaintsPoll

 		
 startPoll

 		
 againstPoll

 		
 getPoll

 		
 finalizePoll

 		
 whiteflagPoll

 		
 extendPoll

 		
 BBVoting

 		
 Events

 		
 VotingRightsGranted

 		
 VotingRightsWithdrawn

 		
 VoteCommitted

 		
 VoteRevealed

 		
 Modifiers

 		
 isDisputeJob

 		
 Functions

 		
 isAgaintsPoll

 		
 setBBOReward

 		
 requestVotingRights

 		
 withdrawVotingRights

 		
 checkBalance

 		
 commitVote

 		
 revealVote

 		
 checkHash

 		
 claimReward

 		
 calcReward

 		
 AdminUpgradeabilityProxy

_static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

